Back to Projects MCP

MCP Server: Langfuse

Comprehensive MCP for Langfuse observability. Access traces, scores, datasets, and prompt management through LLMs.

The Problem

Debugging LLM applications requires constantly switching between code and the Langfuse dashboard. Accessing traces, scores, and datasets programmatically is cumbersome.

The Solution

A comprehensive MCP server for Langfuse observability. Access traces, manage datasets, query scores, and handle prompt versioning—all through your LLM interface.

Architecture

%%{init: {'theme': 'dark', 'themeVariables': { 'fontFamily': 'Inter', 'secondaryColor': '#1e293b', 'primaryColor': '#3b82f6', 'primaryBorderColor': '#60a5fa' }}}%% graph LR subgraph Client ["Client"] A["LLM<br/>(Claude/GPT)"] end subgraph Protocol ["MCP Protocol"] A <-->|"JSON-RPC"| B["MCP Server"] end subgraph Backend ["Backend"] B <--> C["API"] B --> D["Tools"] end classDef default fill:#0f172a,stroke:#334155,color:#fff,stroke-width:1px; classDef agent fill:#0f172a,stroke:#3b82f6,color:#fff; classDef process fill:#0f172a,stroke:#334155,color:#fff; class A agent; class B,C,D process;
AI Agent
Process Step

Tags

TypeScriptLangfuseObservability

Outcomes

  • 22 tools for complete observability access
  • Traces, scores, datasets, and sessions management
  • Works with Langfuse Cloud and self-hosted